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Abstract. We have investigated the size dependence of the ground state energy as a function of the magnetic
field in Josephson junction arrays with open boundaries. We present a simple rings model that reproduces
with great confidence the size and field dependence of the energy of the system obtained by numerical
simulation of the Hamiltonian. From these results we obtained the size dependence of the first penetration
field, where the one-vortex state becomes favorable compared to the zero-vortex state.

PACS. 74.81.Fa Josephson junction arrays and wire networks

1 Introduction

Josephson junctions have been vastly studied for a num-
ber of years as paradigmatic systems for studying phase
transitions in two dimensions [1], model high temperature
superconductors [2], and studying quantum transitions [3].
The technological ability to fabricate these structures of
high quality and the possibility to make numerical sim-
ulations of model systems have fostered its study. How-
ever, most of the large quantity of publications related
with this subject were concentrated in infinite systems. In
numerical simulations periodic or quasi-periodic bound-
ary conditions were used to obtain the thermodynamic
limit. For example the vortex density induced in a sample
is directly determined by the applied magnetic field. On
the other hand, all experiments are performed in samples
of finite size mostly with open boundaries where size ef-
fects hardly could be neglected. Transport measurements
involving vortex motion across the samples is strongly af-
fected by vortex–boundary interaction that generates a
“surface” barrier [4] or could induce vortex reflection at
the sample border [5].

In this regard a number of relevant questions arise:
Which would be the equilibrium vortex density in a finite
system for a given applied magnetic field? Which would be
its structure? Is there a range of fields where a “Meissner”
phase without vortices in the sample would exist?

In this work we concentrate in the last question. We
have calculated analytical and numerically the ground
state of finite square Josephson junction arrays as a func-
tion of the magnetic field without and with one vortex in
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the array. From these calculations we obtain a first vortex
penetration field as a function of the sample size.

2 Model

The energy for a single Josephson junction between two
superconducting electrodes, i, j, without taking into ac-
count the electrostatic energy can be written as:

EJ (i, j) =
�Ic

2e
(1 − cos(γi,j)) (1)

where γi,j =
(
θi − θj − 2e

�c

∫ j

i A · dl
)

is the gauge invari-
ant phase difference between electrodes, and Ic is the crit-
ical current of the junction, e is the electron charge, and
A is the magnetic vector potential.

The Hamiltonian for a network of junctions can be
expressed as:

HJJA =
1
2

∑
i,〈j〉

EJ(i, j) (2)

where i spawns to all sites of array and 〈j〉 to all nearest
neighbors of i. In this model Hamiltonian the capacitive
and inductive contributions are neglected.

We are interested in the behavior of finite arrays, which
implies that there are superconducting islands located in
the perimeter that have less neighbor islands that those
located in the interior of the array. In these circumstances
the ground state of the system in the presence of a perpen-
dicular magnetic field can not be described by a Bravais
lattice of vortices as in infinite systems [6].
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Fig. 1. Sketch of a square Josephson array. Rings taken in the
model are emphasized.

2.1 Rings approximation

It is known that in the presence of a magnetic field
Meissner currents flow through the perimeter of a super-
conducting sample, decaying towards the center of the
sample. The simplest model that can take the energy
cost associated with this “shielding” currents into account
is assuming that they flow concentrically mirroring the
perimeter of the sample as sketched in Figure 1. With
this concentric rings approximation the current that flows
in all the junctions of each ring (Ii,j = Ic sin(γi,j)) is the
same, therefore all the γi,j must be identical within each
ring. To calculate the γi,j we use the fluxoid quantifica-
tion:

∑

ring
γi,j = 2π

Φ

Φ0
+ 2πnv (3)

= 2πf(M − 1)2 + 2πnv (4)

where f is the frustration of the array defined as the ratio
between the magnetic flux per plaquette and the elemen-
tary flux quantum f = ΦP

Φ0
, nv indicates the number of

vortices concatenated by the ring, and M is the number
of superconducting islands in each side of the square ring.
As all the γi,j = γ0 are equal, the left hand part of equa-
tion (3) is equivalent to 4(M−1)γ0. In this way the energy
for a ring of side M is given by:

Ering(M) = 4EJ0(M − 1){
1 − cos

[
π

2

(
f(M − 1) +

nv

(M − 1)

)]}
(5)

where we have defined EJ0 = �IC

2e .
Finally the total energy for a sample of size N ×N can

by written as:

ET (nv, f) = EJ0

N/2∑
k=1

4(2k − 1)

{
1 − cos

[
π

2

(
f(2k − 1) +

nv

2k − 1

)]}
. (6)

2.1.1 Zero vortex state

Equation (6) can be approximated in the case of no vor-
tices in the sample and small magnetic fields (f � 1/N)
as:

ET (nv = 0, f) ≈ EJ0

N/2∑
k=1

4(2k − 1)
[
π2

8
f2(2k − 1)2

]

= EJ0
π2

16
(N4 − 2N2)f2. (7)

This expression explicits the quadratic dependence on
field of the energy with a curvature proportional to N4.

2.1.2 One vortex state

In order to calculate the first penetration field we have to
compare the energy of the state calculated in the previ-
ous section with that of the state with one vortex in the
system.

For the evaluation of the energy of the system with one
vortex located in the center of the array we can approxi-
mate equation (6) by: ET (nv = 1, f)/EJ0 ≈ a + bf + cf2.
The first term of this equation corresponds to the energy
cost for the creation of a vortex excitation in the system
and is function of the size of the sample, a ∝ log(N/2) [7].
The linear and quadratic coefficients can be evaluated
through the derivatives of equation (6) given by:

b =
π2

4
N2 (8)

c =
π2

16
(N4 − 2N2).

Given that the quadratic term of the one vortex con-
figuration is the same as in the “Meissner” state, the first
critical field can be easily computed as fC1 = −a/b, with
the a, b previously defined.

3 Numerical results

We have performed numerical simulations of finite arrays
to calculate the ground state energy as a function of mag-
netic field and sample size. We have used a Metropolis
algorithm in order to find the global energy minimum of
equation (2) in arrays of junctions with square symme-
try. In the absence of vortices in the sample we started
at zero applied field and all phases equal (which is the
ground state of the system), then we change the frustra-
tion (magnetic field) in steps of typically ∆f = 0.001, and
let the system relax to the minimal energy configuration.
This final state was used as seed for the following calcu-
lated frustration. In each step we computed the vorticity
of the system to check that no vortices were present in
the obtained phase configuration. In Figure 2 we plot the
total energy as a function of frustration for various sample
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Fig. 2. Energy (in units of EJ0) as a function of frustration for
different array sizes (N = 10, 12, 20, 24, 30, 40, 60) and without
vortices.

Fig. 3. Energy (in units of EJ0) as a function of frustration for
different array sizes (N = 10, 12, 20, 24, 30, 60) and one vortex
in the system.

sizes. It is clear the parabolic dependence with an increas-
ing curvature as a function of sample size.

In the case of one vortex in the sample we started the
simulations with a frustration of f = 0, and a phase con-
figuration given by the arctangent model [8] for a vortex
in the center of the system. Then similarly as before we
change the frustration in small steps and let the system
relax to the minimum of energy, checking in each step that
the vorticity of the system remains equal to one. In Fig-
ure 3 we plot the results for these simulations. Again it is
clear the parabolic dependence for the energy with a in-
creasing curvature as increasing the sample size. Another
interesting point to remark is the fact that the minimum
for each parabola is not located in f = 1/N2, frustration
where the total magnetic flux is equal to one flux quantum
in the system, but at larger frustrations. This is a clear
effect of the sample boundaries that imposes the condition
of no currents leaving the sample.

Fig. 4. Left axis: Quadratic coefficient. Symbols: results the
simulation. Line: rings model. Right axis: Linear term. Open
symbols: results from the simulation with nv = 1. Line: Rings
model.

For each of these curves (nv = 0, 1) we have performed
a linear square fit with a quadratic expression. In Figure 4
we plot the quadratic coefficient from the fits and the re-
sults from the rings model as a function of sample size.
Also in the same figure we drawn the linear coefficient ob-
tained from the fit in the results of the simulations with
one vortex, and the values obtained from the model. It
is clear the excellent agreement between model and sim-
ulations specially in the quadratic term. The difference
observed in the linear term is due to the simplification
done in the model neglecting the radial junction contri-
bution to the total energy. A simple adjustment of the
energy within this model that can take into account this
contribution is presented in Appendix B.

3.1 First critical field

For a given sample size the crossing between the curves of
nv = 0 and nv = 1 defines the frustration where becomes
energetically favorable the creation of a vortex excitation
in the sample and can be defined as a first critical field
for the system. In Figure 5 we plot these values for the
case of the simulations and those obtained with the rings
model as a function of sample size. The agreement be-
tween the model and the simulation in the whole range of
sizes investigated spawning almost 2 orders of magnitude
is remarkable. As expected the extrapolation to infinite
systems gives a zero critical field and for a 2 × 2 system
to f = 1/2.

4 Discussion and conclusions

Our results show that the magnetic field dependence of
the ground state energy of Josephson junction arrays with
open boundaries follow a parabolic dependence with a
quadratic coefficient proportional to the fourth power of
the size, for the case of zero an one vortex in the system.
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Fig. 5. First critical field as a function of sample size. Dots
data obtained in the numerical simulations, line result from
the rings model.

A simple rings model gives analytical expressions that re-
produces with very good approximation the field and size
dependence of the ground state energy. Size effects are
clearly represented by the existence of a first critical field
greater than the infinite limit fC1 = 1/N2. These results
made evident that influence of boundaries could not be
neglected on considering vortex structures and phase tran-
sitions in Josephson junction arrays.

Appendix A

It is interesting to note that in the case of zero vortices in
the system the expression (6) can be written in a closed
form:

ET (nv = 0, f) =
1
2

sin
(

fπ

2

)−2 [
N2 (1 − cos(πf))

− N4 sin(πf/2) sin(πNf/2)

+ 4 cos(πf/2) (1 + cos(πNf/2))
]
. (9)

Appendix B: Radial junctions correction

In the rings model presented in this work we have ne-
glected the energy contribution from the radial junctions,
those that interconnects successive concentric rings. This
fact gives a systematic sub-estimation of the total energy
as can be clearly seen in Figure 6. We can evaluate this
extra energy for the state of one vortex in the system
without magnetic field.

In each square ring the 2π phase change is equally
distributed between all the junctions. This implies that
in one side of the ring the phase can be expressed as
θ(i, M) = −π

4 + π
2

i
M−1 , where M is the side size of the

ring and i : [0, M − 1] is the node index within the ring.

Fig. 6. Ground state energy obtained numerically (symbols),
the rings model (full line), and rings model with correction
(dashed line) as a function of sample size for one vortex in the
center of the system and zero magnetic field.

Fig. 7. Phase difference between the arctangent model and the
rings model as a function of the node position defined as y/x.

In this way the total energy from the radial junctions can
be expressed as:

ER =
N/2∑
k=2

4
2k−3∑
i=0

[
1 − cos

(
π

2

(
i

(2k − 3)
− i + 1

(2k − 1)

))]
.

(10)
Note that this expression gives an over-estimation for

energy difference between the rings model and the true
ground state. As soon as radial junctions are connected,
the phase configuration does not represent a minimum of
the total energy since is a state that violates the current
conservation in each node.

Appendix C: Comparison between rings model
and the arctangent model

A model that gives a valid phase configuration for a vortex
located in the center of a infinite system is the so called
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arctangent model [8]. This state is built setting the phase
in node located in the coordinates (xi,j , yi,j) with the ex-
pression:

θ(i, j) = arctan
(

yi,j

xi,j

)
. (11)

In the case of finite systems this only gives a good approx-
imation to the real state as border effects are not taken
into account.

Although the arctangent model gives a much better
phase configuration for the state of one vortex and zero
frustration than the rings model, its extension to include
the magnetic field dependence is not trivial. On the other
hand our model easily takes into account this dependence.

In Figure 7 we have plotted the phase difference be-
tween the arctangent model and our rings model as a func-
tion of the node position y/x. This clearly shows that both
models coincides on symmetry axis for the square array
and the maximal difference is about 4 degrees. This is a
further proof that our state is very close to local energy
minimum.
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